

Distributed by

LG Electronics

www.lge.com/au http://partner.lge.com/au/index.lge

2024 **DUCTED & CASSETTE AIR CONDITIONER**

CONTENTS

KEY FEATURES

High Performance Comfortable Environment Convenient Control System

HIGHLIGHTS OF LG SINGLE SPLIT

R1Compressor[™]

R1 Compressor is one that combines high-efficiency

AUTO External Static Pressure + Zone Control (On/Off)

High Static Ducted unit can control airflow depending on the number of opening dampers. (Plug & Play (24V) PBZD80)

Twin Rotary Inverter Compressor

Twin Rotary Inverter Compressor consists of stable and optimized structures with low vibration and low noise characteristic

- Twin Rotor
- Refrigerant Cycle Optimization
- Surface Coating
- Concentric Motor

Drain Pump

LG's low to mid-static ducted units have a built in drain pump.

Short Depth for Flexible Installtion

Short depth of Low-Static Duct help to give a flexbility for limited space of ceiling in apartment.

				SI	NGLE SPLIT				
					12		Ceiling Co	ncealed Ducted	
Refrigrant	Cooling	kBtu/h	Outdo	or Unit	$\langle \rangle$		-		
	kW		1ph	3nh	Ceiling Mounted		Mid Cassia	Link Chatie	High Static Splittable
			ipii	5011	Cassette	LOW Static	MID Static	High Static	(1ph / 3ph)
			0.						
	2.5	9				• UBN25L5			
			• UU25WR2						
	~ .	40	0.						
	3.4	12				• UBN35L5			
			• 0035WR2						
	5.0	40	0:						
	5.0	18				●(UBN50L6			
			• UU50WR2						
	6.0	24	0						
	6.8	24			 UTN70PB 		 UMN70M1 		
			• 0070WR2						
	0.5	20	0						
	8.5	30			 UTN85PB 		 UMN85M1 	• UHN85B7	 UHN85M2S (1ph)
\frown			• UU85WR3						
(R32)			01	01					
	9.5 ~ 10.5	36	0	0	• UTN100MA		• UMN100M2	• UHN100B7	• UHN100M2S
									(1ph / 3ph)
			• UU100WR3	• UU100WR3L					
			01	01					
	12.3 ~	42	0	0	● UTN125MA		 UMN125M2 	 UHN125B7 	 UHN125M3S
	12.5								(1ph / 3ph)
			• UU125WR3	• UU125WR3L					
			01	01					
	13.8 ~	48	-	0					 UHN140M3S
	14	40			• 011140MA		• 010111401015		(1ph / 3ph)
			• UU140WR3	• UU140WR3L					
			m:	m:					
	15 ~	55	0	0					
	15.2	55		9				• UHN150B7	(1ph / 3ph)
			• UU150WR3	• UU150WR3L					
				0 1					
	10.0	62						B62AWYN9L6	
	18.0	62		0				(3ph)	
DATON				B62AWYU7L6					
R410AJ									
				0					
	20.0	70		0				(3ph)	
				• B70AWYU7L6					

							DUCTED					
CATEGORY							CASSETTE					
						R32					R4	10A
Cooling kW		2.5	3.4	5.0	6.8	8.5	9.5-10.5	12.3~12.5	13.8~14	15~15.2	18.0	20.0
	Inverter Scroll										•	٠
	R1 Compressor						•	٠	•	•		
High Performance	Twin Rotary Compressor	•	٠	•	•	•						
& Reliability	Corrision resistance Black Fin	•	٠	٠	٠	•	٠	٠	•	•		
	Gold Fin										٠	•
	Long Pipe Installation	•	٠	•	•	٠	٠	٠	٠	٠	•	٠
	LG ThinQ*	•	٠	•	•	٠	٠	٠	٠	٠	٠	٠
	Easy control (PI-485 Connection)	•	٠	•	•	٠	٠	٠	٠	٠	•	٠
	Wi Fi Optional Accessory	•	٠	•	•	٠	٠	٠	٠	٠	•	٠
Convenient	Mobile LG MV Optional Accessory	•	٠	•	•	٠	٠	٠	٠	٠	•	٠
System	Zone Control** (Open/Close) Optional Accessory				•	٠	٠	٠	٠	٠	•	٠
	Drain Pump In built Low -Mid static	•	٠	•	•	٠	٠	٠	٠			
	Drain Pump Optional Accessory High Static					٠	٠	٠	٠	٠	٠	٠
	Auto ESP Setting Mid- High static				•	•	•	•	•	•	•	•
Comfort	Comfort Cooling with Humidity sensor***				•	•	•	٠	٠			
Environment	Night Operation			•	•	•	•	•	•			
Additonal Application	Synchro function^						•	•	•	•		
Quality Air	UV nano Filter Box+				•	٠	٠	٠	٠			
	Air Purification kit++				•	٠	٠	٠	٠			
	Humidity sensing+	•	•	•	•	•	•	•	•	•	•	•
Convenient	Floor Sensing++				•	•	•	•	•			
feature	Human Detect sensing++				•	•	•	٠	•			
	Dual Sensing+++	•	•	•	•	•	•	•	•	•	•	•

* Available with LG Wi-Fi modem (PWFMDD200) and it should be connected to the indoor unit
** With controller PREMTB101 / PREMTA000
*** Available only for Celling Mounted cassette (840 x 840)
+ Available except for Wall Mounted Unit.
++ Cassette Optional Accessory needed
***** Weekly program is available with wired remote controller

+++ Cassette embeded feature, Ducted PREMTB101 / PREMTA000 needed ^ Outdoor unit based, refer page 19

R1Compressor[™]

Twin Rotary Inverter Compressor

R1 Compressor is one that combines high-efficiency, low sound characteristics of the scroll and the simple compressing structure of the rotary compressor. This technology enables a highly efficient compact model.

Twin Rotary Inverter Compressor consists of stable and optimised structures with low vibration and low noise characteristic

Conventional Compressor

Scroll High efficiency / Low sound (Continuous compression, but

Rotary : Simple structure (Compression per 1 rotation)

R1Compressor[™]

Revolutionary Scroll High efficiency / Stable & Simple Structure

Oil

Hybrid Scroll Shape (LG patent)* Patent registration number (S.Korea : 10-1059880, USA : RE46106)

Motor Compression parts (Upper \rightarrow Lower) – Scroll penetrated by shaft \rightarrow remove tilting moment

Simple structure : without sub-frame Oil feeding structure better than previous scroll

Extended operation (Max.150Hz) Low noise & Vibration (Max. 4dB(A)) Less weight **(20%↓)**

Twin Rotor - Unstable Rotation - Stable Rotation - High Noise - Low Noise - High Vibration - Low Vibration

Twin Rotor

Surface Coating

- High Abrasion Resistance

Π

0

Refrigerant Cycle Optimization

Concentric Motor

Quick & Reliable Operation

Through pressure and temperature sensing, the desired indoor temperature can be reached more rapidly.

- Quick response due to sensing with ready for operation.
- Target performance point is reached while avoiding compressor damage from liquid compression or oil shortage.

• With pressure sensing, the desired temperature is achieved in 30% less time in cooling and 44% in heating.

Corrosion Resistance Black Fin

The black coating with enhanced epoxy resin is applied for strong protection from various corrosive external conditions such as salt contamination and air pollution including fumes from factories.

Longer Lifespan, Lower Maintenance Costs

- then a solid windbreak such as concrete (150% Width & Height) must be built 70cm distance from the outdoor unit.
- * Periodic cleaning of the dust or salt particles on the heat exchange is necessary. Clean with water at least once every 6 months.

Verified Protection

 $\ensuremath{\ll}$ Verification of corrosion resistance performance - Test Method B of ISO21207 - ASTM B117 / ISO 9227 (10,000 hours)

Long Pipe Installation

Maximum pipe length up to 85m and elevation length up to 30m provides flexibility for various conditions and easy installation.

Night Operation

Night Operation can reduce noise levels at night time by simply setting the dip switch on the PCB of the outdoor unit.

- Period : 3 month (Checking oil level in real time)

- No use U-Trap

Capacity (kW)	2.5	3.5	5.0	7.0	8.5	10.0	12.5	14.0	15.0
Maximum pipe length	30 m	30 m	30 m	50 m	50 m	85 m	85 m	85 m	85 m
Maximum Height Difference (ODU-IDU)	30 m								

Easy Control (Central Controller)

PI-485 is a gateway device that provides communication between LG Outdoor Units and LG central controllers such as ACP, AC Smart.

AC Ez Touch (PACEZA000) Max.1 Channel Max. 32 unit

AC Smart 5 (PACS5A000) Max. 2 Channels Max. 128 unit

ACP 5 (PACP5A000) Max. 4 Channels Max. 256 unit

ThinQ[™]

Users can control air conditioners using compatible Android or iOS-enabled smartphones and voice commands via Google Assistant and Amazon Alexa.#

% Search "ThinQ" on Google or Apple store then download the app. % Wi-Fi modem (PWFMDD200) is required. (sold separately) * For our policy of continuous ThinQ App improvement, specification,

design and features are subject to change without prior notice.

* LG ThinQ app available on Android or iOS smartphones. Compatible smartphone with Android 4.1.2 (Jellybean) or later or iOS 9 or later required for LG ThinQ app.

* This functions are used by Google Assistant*

Product registration using LG Smart ThinQ, Google Assistant, Amazon Alexa™ apps required. Google or Amazon Accounts (as applicable) needed. Internet connection, data usage charges and conditions apply. Controlling devices and features requires compatible smart devices not included with the product. Google is a trademark of Google LLC. Amazon, Alexa and all related logos are trademarks of Amazon.com Inc. or its affiliates.

Mobile LGMV

LGMV(Monitoring View) helps engineers to inspect and monitor air conditioning unit easily.

Trouble Diagnosis (Black Box Function)

The operation status is recorded until a malfunction occurs.

Service engineer can analyze the malfunction cause more easily during maintenance.

CEILING CONCEALED DUCTED

UVnano[™] Filter Box (Optional Accessory*)

LG UVnano Filter Box can effectively create a safe indoor environment by trapping and removing various harmful substances such as Ultrafine dust, bacteria and viruses in the form of droplets.

* Sold separately, only applicable to Mid Static UMN models

Air Purification Operation

UVnano

1) Based on TÜV Rheinland test conducted according to LG test method in compliance with ISO 20743, removing 99.99 of percent of Staphylococcus aureus, Staphylococcus epidermidis, and Klebsiella pneumoniae after being exposed to UV LED lights for 4 hours (Tested Models : PBM13M3UA0, PBM13M2UA0, PBM13M1UA0)

2) Based on KCL (Korea Conformity Laboratories) test conducted in compliance with ISO 16890

Certificate

Certified Test Report

The built-in UV LED module of tested model (PBM13M3UA0) has over 99.99% sterilization performance on average to bacteria at measuring points of the Pre-Filter under the proposed test condition.

% Tested by TUV Rheinland Standard

ePM₁ 65% Filter

19 10

Chair Spanning

100

200.000

 $ePM_1\,65\%$ Filtering capability rating in accordance with ISO 16890

Certified Test Report

	1037	NPORT	60	ł.
			_	
the second second				
in the second	and here there			
The second second	And Design	Statute 17	and the second second	
Contraction of the local division of the loc			100	
and the second second	1.	S	and a second	
-			1000.000	•
r ins install				
	and the second			
100-				
		Intel and	-	0
			-	•)
		- 19	-	e)
-	-			1
1	1		-at	1
			-at	1
	1	1	-	1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in the second	at the	-
1 Contraction	E: Horn	The second	1 them	
1 form	Er Horon	- House	a know	
1 Count	ti hoon	- Roome	in house	
1 Contraction	t poono	a lanana	1 Store	
t f former	t: pormo	1 Burner	in Summ	
i - Comment	t lonnor	E Hormon	1 Barren	
i Hanna	t: porman	E Bronnon	1 Summer	
i human	t: hormon	1 Januaria	kumun	
i para	t: porman		1 Summer	

EN

Filter

Step 1

Pre-Filter

- Trap large particles - Fine dust
- Bacteria
- Viruses in the form of droplets

 Sterilize bacteria and viruses parasitized on bacteria up to 99.99% ¹⁾ by irradiating ultraviolet rays

ePM₁ 65% Filter

• Trap particles as small as 0.3µm in size 2)

Certified Test Report

Step 3

The built-in UV LED module of tested model (PBM13M3UA0) has 99.99% sterilization performance to virus (Phi X 174) at measuring points of the Pre-Filter under the proposed test condition.

% Tested by TUV Rheinland Standard

Comparison of Filter Classes

779	IS	0 16890 (Ave	rage Efficiend	cy)	ASHRAE 52.2
Class	ePM ₁	ePM _{2.5}	ePM ₁₀	Coarse	Filter Rating
61	-	-	-	-	MERV 1 ~ 4
62	-	-	-	30% ~ 50%	MERV 1 ~ 4
3	-	-	-	45% ~ 65%	MERV 5
i4	-	-	-	60% ~ 85%	MERV 6 ~ 8
15	5% ~ 35%	10% ~ 45%	40% ~ 70%	80% ~ 95%	MERV 8 ~ 10
16	10% ~ 40%	20% ~ 50%	45% ~ 80%	> 90%	MERV 9 ~ 13
7	40% ~ 65%	50% ~ 75%	80% ~ 90%	> 95%	MERV 13 ~ 14
8	65% ~ 90%	75% ~ 95%	90% ~ 100%	> 95%	MERV 14 ~ 15
:9	80% ~ 90%	85% ~ 95%	90% ~ 100%	> 95%	MERV 16

** Tested by KCL (Korea Conformity Laboratories)

% ISO 16890 Standard provides lab evaluation procedures which more realistically simulate actual operating conditions, replacing EN 779 Standard's filter classes G1-F9 by a

classification system based on particulate groups PM1, PM2.5 and PM10.

% Unlike EN 779 Standard which specifies Filter Classes, ISO 16890 Standard classifies according to Filter Groups, evaluating a filter's performance by its arrestance of particles from 0.3µm to 10µm in size. Filter Group PM1 comprises particulate sizes ≤ 1.0µm, PM2.5 includes particulates sizes ≤ 2.5µm and PM10 covers particulate sizes ≤ 10µm.

% Minimum efficiency is defined as the efficiency achieved following electrostatic discharge of the filter before testing.

* Average efficiency is calculated by averaging the filter's efficiencies in the untreated state (before electrostatic discharge) and in the discharged state.

Auto E.S.P. (External Static Pressure) Setting

E.S.P. control function enables control of air volume easily with a remote controller. The BLDC motor can control fan speed and air volume.

Set RPM by simple touch on remote control to change airflow

* Wired remote controller is necessary.

Synchro Function

• Zone Control upto 8 Zone with PRETB100, PREMTB101

• Auto control of fan speed and On / Off operation

Using a spiral duct (rigid or flexible type) and stream chamber, it is possible to operate cooling / heating for several rooms

simultaneously. Also, zone control is available with zone

controller accessory. (PBZC80, PBZD80)

Zone Control Features

Maximum 4 indoor units can be combined by using a branch kit and setting dip switch for one outdoor unit. It can be easily applied to various sites.

Synchro Combination Table

		Syn Ti Ol	chro rio	Qua	rtet	
			rio	Qua	rtet	
	DU	0	DU	0		
B	BD					
IDU B	BD		BD			
REMO		REMO		REMO		
Cassette	Duct	Cassette	Duct	Cassette	Duct	
UTN70PB * 2	UBN50L6 * 2		UBN35L5 * 3		UNB35L5 * 4	
	UMN70M1 * 2		UBN50L6 * 3			
PMU	IB11A	PMUB111A PMUB1111A				
		PREMTA000, PREM	ITB101, PREMTB00	1		
	REMO Cassette UTN70PB * 2 PMU	REMO Cassette Duct UTN70PB * 2 UBN50L6 * 2 UMN70M1 * 2 PMUB11A	REMO REMO Cassette Duct Cassette UTN70PB * 2 UBN50L6 * 2 UMN70M1 * 2 UMN70M1 * 2 UMN70M1 * 2 PMUB11A PMU	REMO REMO Cassette Duct Cassette UTN70PB * 2 UBN50L6 * 2 UBN35L5 * 3 UMN70M1 * 2 UBN50L6 * 3 Image: Comparison of the second	REMO REMO Cassette Duct Cassette Duct Cassette UTN70PB * 2 UBN50L6 * 2 UBN35L5 * 3 UBN35L5 * 3 UMN70M1 * 2 UBN50L6 * 3 UBN50L6 * 3 UMN70M1 * 2 UBN50L6 * 3 UBN50L6 * 3 PMUB11A PMUB111A PMUB	

** When using synchro operation,

• Do not use wireless remote controller.

• Use only one wired remote controller in the indoor units.

DUCTED & CASSETTE AIR CONDITIONER

AUTO External Static Pressure + Zone Control (On/Off)

LG's high static ducted unit does step control (High-Mid-Low Speed) to supply airflow rate to each zone depending on the

0

5

4

3

2

1

Open Damper

8 Damper Unit

1 Damper Open

7 * LG Internal test result based on 15 kW DUCT model. - Temperature: 35/24 °C (Outdoor), 27/19 °C (Indoor)

High Head Drain Pump

High head drain pump automatically drains water up to a height of 700mm of drain-head height. It provides the perfect solution for draining of water.

* High Static Models : Accessory (ABDP7 / PBDP9) / Low to Mid Static Included * Required by option for high static pressure models.

Two Thermistors Control

The indoor temperature can be checked using the thermistors in the remote controller as well as from the indoor unit. There may be a significant difference between ceiling and floor air temperature. Two thermistors can optimised indoor air temperature for a more comfortable environment.

Compares temperatures sensed from different positions, and automatically selects the optimum temperature for users.

Flexible Installation (Low Static Pressure Model)

Standard Inverter low static duct allows the air intake at the rear or bottom under installation condition.

Easy Service & Maintenance (Low to Mid Static Pressure model)

Users are not required to disassemble the whole panel for maintenance; since panel is divided into 2 components; one for heat exchanger and the other for fan / motor. The user can easily detach and re-attach the filter in the available limited space.

Quiet Operation (Low Static Pressure Model)

The noise level of low static ducts have been reduced, even though ESP has been increased.

Sound Pressure (High / Medium / Low)				
Model	dB(A)			
UBN25	35 / 30 / 27			
UBN35	35 / 30 / 27			
UBN50	34 / 31 / 29			

LOW STATIC

UBN25L5 / UBN35L5 / UBN50L6

UU25WR2 / UU35WR2

UU50WR2

		INDOOR	UBN25L5	UBN35L5	UBN50L6
CATEGORY		OUTDOOR	UU25WR2	UU35WR2	UU50WR2
COMBINATIONAL SPECIFIC	ATION	UNIT			
	Rated ²⁾	kW	2.50	3.40	5.00
Cooling Capacity	Min ~ Max	kW	1.50 ~ 3.20	1.50 ~ 4.70	2.00 ~ 5.80
	Rated ²⁾	kW	3.20	4.00	5.80
Heating Capacity	Min ~ Max	kW	1.80 ~ 4.00	1.80 ~ 4.90	2.30 ~ 6.70
AEER			3.640	3.343	3.658
ACOP			4.173	3.647	3.264
	Cooling	А	3.00	4.70	7.40
Rated Current	Heating	А	3.30	4.80	8.30
Full Load Amps		А	10.0	10.0	16.0
Air Flow Rate	Rated	L/s	192	192	250
Air Flow Rate	Min ~ Max	L/s	107 ~ 248	107 ~ 248	133 ~ 250
External Static Pressure	Min ~ Max	Pa	0 ~ 49	0 ~ 49	0 ~ 49
	Net (W x H x D)	mm	900 x 190 x 460	900 x 190 x 460	1,100 x 190 x 460
Indoor	Net Weight	kg	18	18.0	20.9
	Cooling ((SH)/H/M/L)	dB(A)	- / 35.0 / 30.0 / 27.0	- / 35.0 / 30.0 / 27.0	- / 34.0 / 31.0 / 29.0
	Net (W x H x D)	mm	770 x 545 x 288	770 x 545 x 288	870 x 650 x 330
Outdoor	Net Weight	kg	33.3	33.3	45.0
	Cooling / Heating (@ 1.5 m height)	dB(A)	49.0 / 52.0	49.0 / 52.0	47.0 / 52.0
Power Supply		Ø, Hz, V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V
Comproseer	Туре	-	Twin Rotary	Twin Rotary	Twin Rotary
Compressor	Motor Type	-	BLDC	BLDC	BLDC
	Fin Type	-	Wide Louver Plus	Wide Louver Plus	Wide Louver Plus
Heat Exchanger	Corrosion Protection (Coating)	-	Black 2	Black 2	Black 2
Defrigerant	Туре	-	R32	R32	R32
Kenigerant	Pre-charge Length	m	7.5	7.5	7.5
	Liquid	mm(inch)	Ø6.35 (1/4)	Ø6.35 (1/4)	Ø6.35 (1/4)
Pipe size	Gas	mm(inch)	Ø9.52 (3/8)	Ø9.52 (3/8)	Ø12.7 (1/2)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
Piping Length	IDU - ODU (Rated / Max / Min)	m	7.5 / 30 / 5.0	7.5 / 30 / 5.0	7.5 / 30 / 5.0
Maximum Height Difference	IDU - ODU (Max)	m	30	30	30
Supply Air Opening	H x W, Flange (Discharge)	mm	148 x 860	148 x 860	148 x 1062
Return Air Opening	H x W, Flangeless	mm	190 x 807	190 x 807	190 x 1,007
Continuous Operation	Cooling	°C (DB)	-15 ~ 48	-15 ~ 48	-15 ~ 48
continuous operation	Heating	°C (WB)	-18 ~ 18	-18 ~ 18	-18 ~ 18
Wi-Fi Compatible 4)			Optional	Optional	Optional

Note:

1. Specifications are correct at the time of printing and may be changed without notice.

2. Capacities are based on following conditions.

• Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB

• Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB 3. This product contains fluorinated greenhouse gases. (R32)

4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

MID STATIC

UMN70M1 / UMN85M1

CATECODY		INDOOR
CATEGORY		OUTDOOR
COMBINATIONAL SPECIFIC	ATION	UNIT
Carling Constitu	Rated ²⁾	kW
Cooling Capacity	Min ~ Max	kW
	Rated ²⁾	kW
Heating Capacity	Min ~ Max	kW
AEER		
ACOP		
	Cooling	А
Rated Current	Heating	А
Full Load Amps		А
Air Flow Rate	Rated	L/s
Air Flow Rate	Min ~ Max	L/s
External Static Pressure	Min ~ Max	Pa
	Net (W x H x D)	mm
Indoor	Net Weight	kg
	Cooling ((SH)/H/M/L)	dB(A)
	Net (W x H x D)	mm
Outdoor	Net Weight	kg
	Cooling / Heating (@ 1.5 m height)	dB(A)
Power Supply		Ø, Hz, V
Compressor	Туре	-
Compressor	Motor Type	-
	Fin Type	-
Heat Exchanger	Corrosion Protection (Coating)	-
Pefrigerant	Туре	-
Kerngerane	Pre-charge Length	m
	Liquid	mm(inch)
Pipe size	Gas	mm(inch)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)
Piping Length	IDU - ODU (Rated / Max / Min)	m
Maximum Height Difference	IDU - ODU (Max)	m
Supply Air Opening	H x W, Flange (Discharge)	mm
Return Air Opening	H x W, Flangeless	mm
Continuous Operation	Cooling	°C (DB)
	Heating	°C (WB)
Wi-Fi Compatible 4)		

Note:

1. Specifications are correct at the time of printing and may be changed without notice. 2. Capacities are based on following conditions.

• Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB • Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB

3. This product contains fluorinated greenhouse gases. (R32)

4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

UU70WR2 / UU85WR3

UMN70M1	UMN85M1
UU70WR2	UU85WR3
6.80	8.00
2.70 ~ 8.00	3.10 ~ 9.00
7.50	9.00
3.00 ~ 9.00	3.60 ~ 10.10
3.451	3.448
3.275	3.383
8.70	9.90
10.10	11.70
17.0	17.0
300	367
193 ~ 390	240 ~ 477
20 ~ 147	25 ~ 147
900 x 270 x 700	900 x 270 x 700
24.0	25.0
- / 35.0 / 34.0 / 32.0	- / 37.0 / 35.0 / 34.0
950 x 834 x 330	950 x 834 x 330
59.0	59.0
48.0 / 52.0	50.0 / 52.0
1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V
Twin Rotary	Twin Rotary
BLDC	BLDC
Wide Louver Plus	Wide Louver Plus
Black 2	Black 2
R32	R32
10	10
Ø9.52 (3/8)	Ø9.52 (3/8)
Ø15.88 (5/8)	Ø15.88 (5/8)
Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
7.5 / 50 / 5.0	7.5 / 50 / 5.0
30	30
200 x 857	200 x 857
231 x 849	231 x 849
-15 ~ 48	-15 ~ 48
-18 ~ 18	-18 ~ 18
Optional	Optional

MID STATIC

UU100WR3 / UU125WR3 / UU140WR3

		INDOOR	UMN100M2	UMN125M2	UMN140M3
		OUTDOOR	UU100WR3	UU125WR3	UU140WR3
COMBINATIONAL SPECIFIC	ATION	UNIT			
Cooling Canacity	Rated ²⁾	kW	9.50	12.30	13.80
cooking cupacity	Min ~ Max	kW	3.80 ~ 12.54	4.80 ~ 14.04	5.40 ~ 15.68
Heating Capacity	Rated ²⁾	kW	10.80	13.50	15.50
Treating capacity	Min ~ Max	kW	4.30 ~ 13.39	5.40 ~ 15.80	6.20 ~ 17.52
AEER			3.724	3.416	3.209
ACOP			3.829	3.561	3.554
D. 10	Cooling	A	11.10	15.30	19.00
Rated Current	Heating	А	12.60	16.40	18.40
Full Load Amps		А	17.0	28.0	28.0
Air Flow Rate	Rated	L/s	533	633	667
Air Flow Rate	Min ~ Max	L/s	320 ~ 693	373 ~ 823	373 ~ 867
External Static Pressure	Min ~ Max	Pa	39 ~ 147	49 ~ 147	39 ~ 147
	Net (W x H x D)	mm	1,250 x 270 x 700	1,250 x 270 x 700	1,250 x 360 x 700
Indoor	Net Weight	kg	36.5	36.5	41.0
	Cooling ((SH)/H/M/L)	dB(A)	- / 36.0 / 34.0 / 33.0	- / 38.0 / 36.0 / 34.0	- / 39.0 / 38.0 / 36.0
	Net (W \times H \times D)	mm	950 x 1,380 x 330	950 x 1,380 x 330	950 x 1,380 x 330
Outdoor	Net Weight	kg	89.0	89.0	89.0
	Cooling / Heating (@ 1.5 m height)	dB(A)	50.0 / 50.0	51.0 / 52.0	52.0 / 53.0
Power Supply		Ø, Hz, V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V
Company.	Туре	-	Inverter Scroll	Inverter Scroll	Inverter Scroll
Compressor	Motor Type	-	BLDC	BLDC	BLDC
	Fin Type	-	Wide Louver Plus	Wide Louver Plus	Wide Louver Plus
Heat Exchanger	Corrosion Protection (Coating)	-	Black 2	Black 2	Black 2
Pofrigorant	Туре	-	R32	R32	R32
Kerngerant	Pre-charge Length	m	20	20	20
	Liquid	mm(inch)	Ø9.52 (3/8)	Ø9.52 (3/8)	Ø9.52 (3/8)
Pipe size	Gas	mm(inch)	Ø15.88 (5/8)	Ø15.88 (5/8)	Ø15.88 (5/8)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
Piping Length	IDU - ODU (Rated / Max / Min)	m	7.5 / 85.0 / 5.0	7.5 / 85.0. / 5.0	7.5 / 85.0 / 5.0
Maximum Height Difference	IDU - ODU (Max)	m	30	30	30
Supply Air Opening	H x W, Flange (Discharge)	mm	197 x 1,206	197 x 1,206	291 x 1,206
Return Air Opening	H x W, Flangeless	mm	230 x 1,205	230 x 1,205	320 x 1,205
Continuous Organiza	Cooling	°C (DB)	-15 ~ 48	-15 ~ 48	-15 ~ 48
continuous operation	Heating	°C (WB)	-18 ~ 18	-18 ~ 18	-18 ~ 18
Wi-Fi Compatible 4)			Optional	Optional	Optional

Note:

Specifications are correct at the time of printing and may be changed without notice.
 Capacities are based on following conditions.
 Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB
 Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB
 This model the patient of particular dependence on conditions.

This product contains fluorinated greenhouse gases. (R32)
 (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

DUCTED 8	CASSETTE	AIR CONDITIONER	

HIGH STATIC

UHN85B7 / UHN100B7

CATEGORY		INDOOR
CATEGORT	OUTDOOR	
COMBINATIONAL SPECIFIC	ATION	UNIT
Cooling Consolty	Rated ²⁾	kW
Cooling Capacity	Min ~ Max	kW
	Rated ²⁾	kW
Heating Capacity	Min ~ Max	kW
AEER		
ACOP		
D. 10	Cooling	А
Rated Current	Heating	А
Full Load Amps		А
Air Flow Rate	Rated	L/s
Air Flow Rate	Min ~ Max	L/s
External Static Pressure	Min ~ Max	Pa
	Net (W x H x D)	mm
Indoor	Net Weight	kg
	Cooling ((SH)/H/M/L)	dB(A)
	Net (W x H x D)	mm
Outdoor	Net Weight	kg
	Cooling / Heating (@ 1.5 m height)	dB(A)
Power Supply		Ø, Hz, V
Comproseer	Туре	-
Compressor	Motor Type	-
	Fin Type	-
Heat Exchanger	Corrosion Protection (Coating)	-
Refrigerant	Туре	-
Reingerand	Pre-charge Length	m
	Liquid	mm(inch)
Pipe size	Gas	mm(inch)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)
Piping Length	IDU - ODU (Rated / Max / Min)	m
Maximum Height Difference	IDU - ODU (Max)	m
Supply Air Opening	H x W, Flange (Discharge)	mm
Return Air Opening	H x W, Flange	mm
Continuous Operation	Cooling	°C (DB)
continuous operation	Heating	°C (WB)
Wi-Fi Compatible 4)		

Note:

Specifications are correct at the time of printing and may be changed without notice.
 Capacities are based on following conditions.
 Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB
 Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB

3. This product contains fluorinated greenhouse gases. (R32)

4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

UU85WR3

UU100WR3

UHN85B7

Optional

UU85WR3	UU100WR3
8.80	10.50
2.50 ~ 9.60	3.20 ~ 13.00
9.40	13.00
2.70 ~ 11.10	3.40 ~ 13.70
3.384	3.749
4.017	4.126
11.40	12.20
10.30	13.80
17.0	29.0
533	700
267 ~ 693	373 ~ 910
50 ~ 200	50 ~ 200
1,320 x 400 x 534	1,320 x 400 x 534
47.6	47.6
- / 41.0 / 40.0 / 39.0	- / 43.0 / 41.0 / 40.0
950 x 834 x 330	950 x 1,380 x 330
59.0	89.0
51.0 / 52.0	53.0 / 54.0
1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V
Twin Rotary	Inverter Scroll
BLDC	BLDC
Wide Louver Plus	Wide Louver Plus
Black 2	Black 2
R32	R32
10	20
Ø9.52 (3/8)	Ø9.52 (3/8)
Ø15.88 (5/8)	Ø15.88 (5/8)
Ø32 (1-1/4) / 25 (31/32)	Ø32 (1-1/4) / 25 (31/32)
7.5 / 50 / 5.0	7.5 / 85 / 5.0
30	30
287 x 840	287 x 840
317 x 1,172	317 x 1,172
-15 ~ 48	-15 ~ 48
-18 ~ 18	-18 ~ 18

Optional

(R32)

HIGH STATIC

UHN125B7 / UHN150B7

CATECODY		INDOOR	UHN125B7	UHN150B7
CATEGORY		OUTDOOR	UU125WR3	UU150WR3
COMBINATIONAL SPECIFIC	ATION	UNIT		
Cooling Consoity	Rated ²⁾	kW	12.50	15.00
Cooling Capacity	Min ~ Max	kW	4.00 ~ 14.80	4.80 ~ 15.80
Useting Conseitu	Rated ²⁾	kW	15.00	17.00
Heating Capacity	Min ~ Max	kW	4.00 ~ 16.50	4.80 ~ 18.00
AEER			3.679	3.228
ACOP			3.899	3.596
Detect Comment	Cooling	А	14.90	20.40
Rated Current	Heating	А	16.90	20.80
Full Load Amps		А	29.0	29.0
Air Flow Rate	Rated	L/s	833	1000
Air Flow Rate	Min ~ Max	L/s	480 ~ 1,083	533 ~ 1,300
External Static Pressure	Min ~ Max	Pa	60 ~ 200	60 ~ 200
	Net (W x H x D)	mm	1,320 x 400 x 534	1,320 x 400 x 534
Indoor	Net Weight	kg	50.6	50.6
	Cooling ((SH)/H/M/L)	dB(A)	- / 44.0 / 42.0 / 41.0	- / 45.0 / 44.0 / 42.0
	Net (W x H x D)	mm	950 x 1,380 x 330	950 x 1,380 x 330
Outdoor	Net Weight	kg	89.0	89.0
	Cooling / Heating (@ 1.5 m height)	dB(A)	53.0 / 54.0	54.0 / 56.0
Power Supply		Ø, Hz, V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V
Compressor	Туре	-	Inverter Scroll	Inverter Scroll
	Motor Type	-	BLDC	BLDC
	Fin Type	-	Wide Louver Plus	Wide Louver Plus
Heat Exchanger	Corrosion Protection (Coating)	-	Black 2	Black 2
Pofrigorant	Туре	-	R32	R32
Kenngerant	Pre-charge Length	m	20	20
	Liquid	mm(inch)	Ø9.52 (3/8)	Ø9.52 (3/8)
Pipe size	Gas	mm(inch)	Ø15.88 (5/8)	Ø15.88 (5/8)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	Ø32 (1-1/4) / 25 (31/32)	Ø32 (1-1/4) / 25 (31/32)
Piping Length	IDU - ODU (Rated / Max / Min)	m	7.5 / 85 / 5.0	7.5 / 85 / 5.0
Maximum Height Difference	IDU - ODU (Max)	m	30	30
Supply Air Opening	H x W, Flange (Discharge)	mm	287 x 840	287 x 840
Return Air Opening	H x W, Flange	mm	317 x 1,172	317 x 1,172
Continuous Operation	Cooling	°C (DB)	-15 ~ 48	-15 ~ 48
Continuous Operation	Heating	°C (WB)	-18 ~ 18	-18 ~ 18

Optional

Optional

Note:

1. Specifications are correct at the time of printing and may be changed without notice. 2. Capacities are based on following conditions.

• Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB • Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB

3. This product contains fluorinated greenhouse gases. (R32)

4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

UU125WR3 / UU150WR3

HIGH STATIC

B62AWYN9L6 / B70AWYN9L6

CATECODY		INDOOR
CATEGORY		OUTDOOR
COMBINATIONAL SPECIFICA	TION	UNIT
Detect Connector ²	Cooling	kW
Rated Capacity -/	Heating	kW
Date d Davies la sut	Cooling	kW
Rated Power Input	Heating	kW
AEER	Cooling	
	Heating	
P. 10	Cooling	А
Rated Current	Heating	А
Full Load Amps		А
Air Flow Rate		L/s
External Static Pressure		Pa
	Sound Level at 1.5 m	Pressure dB(A)
Indoor	Dimensions	mm
	Weight	kg
	Sound Level at 1.5 m	Pressure dB(A)
Outdoor	Sound Power Level	dB(A)
Outdoor	Dimensions	mm
	Weight	kg
Power Supply		Ø, Hz, V
Circuit Breaker		A
Compressor Type		
	Туре	
Heat Exchanger	Corrosion Protection (Coating)	
Defrigerant 3)	Туре	
Kerngerant"	Pre-charge Length	m
	Liquid	mm(inch)
Pipe size	Gas	mm(inch)
	Drain OD/ID (Drain Pump)	mm
Max. Piping Length		m
Max. Height Difference	ODU - IDU	m
Supply Air Opening	H x W, Flange (Discharge)	mm
Return Air Opening	H x W, Flange	mm
Continuous Operation	Cooling	°C (DB)
continuous operation	Heating	°C (WB)
Wi-Fi Compatible 4)		

Note:

1. Specifications are correct at the time of printing and may be changed without notice. 2. Capacities are based on following conditions.

• Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB

• Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB

3. This product contains fluorinated greenhouse gases. (R32)

4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

Wi-Fi Compatible 4)

B62AWYU7L6 / B70AWYU7L6

B62AWYN9L6	B70AWYN9L6
B62AWYU7L6	B70AWYU7L6
18	20
20.6	22.6
5.47	6.47
5.49	6.19
3.29 (EER)	3.09 (EER)
3.75 (COP)	3.65 (COP)
9.3	10.9
9.6	10.5
24	24
1,067 ~ 1,333	1,067 ~ 1,333
59 ~ 176	59 ~ 176
43.0 / 41.0 / 40.0	43.0 / 41.0 / 40.0
1,563 x 458 x 791	1,563 x 458 x 791
92.7	92.7
59 / 60	59 / 60
71	71
1,090 × 1,625 × 380	1,090 × 1,625 × 380
139	139
380-415, 3, 50	380-415, 3, 50
30	30
Hermetically Sealed Scroll	Hermetically Sealed Scroll
Wide Louver Plus	Wide Louver Plus
Gold	Gold
R410A	R410A
15	15
Ø12.7 (1/2)	Ø12.7 (1/2)
Ø22.2 (7/8)	Ø22.2 (7/8)
Ø32/25	Ø32 / 25
75	75
30	30
286 x 1,044	286 x 1,044
392 x 1,368	392 x 1,368
-15 ~ 48	-15 ~ 48
-15 ~ 48	-15 ~ 48
Optional	Optional

HIGH STATIC SPLITTABLE DUCTED

Lighter & Splittable Structure

LG Splittable indoor units comprise three key components. Its comparatively lightweight structure allows for easy transportation during installation.

Built-in Return Plenum

The LG Splittable Ducted indoor unit has a built-in plenum which helps to reduce extra costs on installation as no customised plenum needs to be made by the installer. The LG Splittable unit is simple to handle in tight spaces as the unit can be easily dissembled and reassembled in the roof cavity.

Compact Height

LG Splittable Ducted indoor unit can be installed into low height roofs. The unit height of < 360 mm is designed to fit comfortably into tighter roof spaces

% Based on 15.5 kW

HIGH STATIC SPLITTABLE

UHN85M2S / UHN100M2S

UU85WR3 / UU100WR3 / UU100WR3L

					14
		INDOOR	UHN85M2S	UHN100M2S	UHN100M2S
CATEGORY		OUTDOOR	UU85WR3	UU100WR3	UU100WR3L
COMBINATIONAL SPECIFIC	ATION	UNIT			
	Rated ²⁾	kW	8.5	10.5	10.5
Cooling Capacity	Min ~ Max	kW	2.55 ~ 9.3	4.2 ~ 13	4.2 ~ 13
	Rated ²⁾	kW	10	13	13
Heating Capacity	Min ~ Max	kW	2.87 ~ 11	5.2 ~ 13.9	5.2 ~ 13.9
AEER			3.364	3.75	3.75
ACOP			3.667	4.00	4.00
	Cooling	А	11.2	12.2	4.3
Rated Current	Heating	А	12.0	14.2	4.9
Full Load Amps		А	17.0	29.0	14.0
Air Flow Rate	Rated	L/s	583	700	700
Air Flow Rate	Min ~ Max	L/s	305 ~ 815	377 ~ 893	377 ~ 893
External Static Pressure	Min ~ Max	Pa	39 ~ 137	39 ~ 137	39 ~ 137
	Net (W x H x D)	mm	1,250 x 270 x 820	1,250 x 270 x 820	1,250 x 270 x 820
Indoor	Net Weight	kg	42	42	42
	Cooling ((SH)/H/M/L)	dB(A)	- / 42.0 / 40.0 / 38.0	- / 45.0 / 43.0 / 41.0	- / 45.0 / 43.0 / 41.0
	Net (W x H x D)	mm	950 x 834 x 330	950 x 1,380 x 330	950 x 1,380 x 330
Outdoor	Net Weight	kg	59.0	89.0	89.0
	Cooling / Heating (@ 1.5 m height)	dB(A)	51 / 52	50 / 50	50 / 50
Power Supply		Ø, Hz, V	1, 50 Hz 220-240 V	1, 50 Hz 220-240 V~	3, 50 Hz 380-415 V 3N~
Compressor	Туре	-	Twin Rotary	Inverter Scroll	Inverter Scroll
compressor	Motor Type	-	BLDC	BLDC	BLDC
	Fin Type	-	Wide Louver Plus	Wide Louver Plus	Wide Louver Plus
Heat Exchanger	Corrosion Protection (Coating)	-	Black 2	Black 2	Black 2
Refrigerant	Туре	-	R32	R32	R32
	Pre-charge Length	m	10	20	20
Pipe size	Liquid	mm(inch)	Ø9.52 (3/8)	Ø9.52 (3/8)	Ø9.52 (3/8)
	Gas	mm(inch)	Ø15.88 (5/8)	Ø15.88 (5/8)	Ø15.88 (5/8)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
Piping Length	IDU - ODU (Rated / Max / Min)	m	7.5 / 50 / 5.0	7.5 / 85 / 5.0	7.5 / 85 / 5.0
Maximum Height Difference	IDU - ODU (Max)	m	30	30	30
Air Vent	Return (Oval)	mm	2 x 400	2 x 400	2 x 400
Air vent	Supply (W x H, Flange)	mm	1,148 x 241	1,148 x 241	1,148 x 241

mm °C (DB)

°C (WB)

-15 ~ 48

-18 ~ 18

Optional

-15 ~ 48

-18 ~ 18

Optional

-15 ~ 48

-18 ~ 18

Optional

Note:

Continuous Operation

Wi-Fi Compatible 4)

Specifications are correct at the time of printing and may be changed without notice.
 Capacities are based on following conditions.
 Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB
 Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB
 This model the patient of particular dependence on conditions.

Cooling

Heating

This product contains fluorinated greenhouse gases. (R32)
 (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

HIGH STATIC SPLITTABLE

UHN125M3S

CATEGORY		INDOOR	
	OUTDOOR		
COMBINATIONAL SPECIFIC	ATION	UNIT	
Cooling Conscity	Rated ²⁾	kW	
Cooling Capacity	Min ~ Max	kW	
Unation Consults	Rated ²⁾	kW	
Heating Capacity	Min ~ Max	kW	
AEER			
ACOP			
	Cooling	А	
Rated Current	Heating	А	
Full Load Amps		А	
Air Flow Rate	Rated	L/s	
Air Flow Rate	Min ~ Max	L/s	
External Static Pressure	Min ~ Max	Pa	
	Net (W x H x D)	mm	
Indoor	Net Weight	kg	
	Cooling ((SH)/H/M/L)	dB(A)	
	Net (W x H x D)	mm	
Outdoor	Net Weight	ka	
Outdoor	Cooling / Heating (@ 1.5 m height)	dB(A)	
Power Supply		Ø, Hz, V	
	Туре	-	
Compressor	Motor Type	-	
	Fin Type	-	
Heat Exchanger	Corrosion Protection (Coating)	-	
Definition	Туре	-	
kerrigerant	Pre-charge Length	m	
	Liquid	mm(inch)	
Pipe size	Gas	mm(inch)	
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	
Piping Length	IDU - ODU (Rated / Max / Min)	m	
Maximum Height Difference	IDU - ODU (Max)	m	
Air Vont	Return (Oval)	mm	
All vent	Supply (W x H, Flange)	mm	
C	Cooling	°C (DB)	
Continuous Operation	Heating	°C (WB)	
Wi-Fi Compatible 4)			

Note:

Specifications are correct at the time of printing and may be changed without notice.
 Capacities are based on following conditions.
 Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB
 Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB
 This product the protected the protected proceeding up of comparison.

3. This product contains fluorinated greenhouse gases. (R32) 4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

UU125WR3 / UU125WR3L

R32	
Ŭ	

UHN125M3S	UHN125M3S
UU125WR3	UU125WR3L
12.5	12.5
5.1 ~ 14.3	5.1 ~ 14.3
15	15
6 ~ 16.2	6 ~ 16.2
3.68	3.68
3.95	3.95
14.9	5.1
16.9	5.7
29.0	14.0
833	833
425 ~ 1,035	425 ~ 1,035
49 ~ 157	49 ~ 157
1,250 x 360 x 820	1,250 x 360 x 820
47	47
- / 44.0 / 42.0 / 41.0	- / 44.0 / 42.0 / 41.0
950 x 1,380 x 330	950 x 1,380 x 330
89.0	89.0
51 / 52	51 / 52
1, 50 Hz 220-240 V	3, 50 Hz 380-415 V
Inverter Scroll	Inverter Scroll
BLDC	BLDC
Wide Louver Plus	Wide Louver Plus
Black 2	Black 2
R32	R32
20	20
Ø9.52 (3/8)	Ø9.52 (3/8)
Ø15.88 (5/8)	Ø15.88 (5/8)
Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
7.5 / 85 / 5.0	7.5 / 85 / 5.0
30	30
2 x 400	2 x 400
1,148 x 291	1,148 x 291
-15 ~ 48	-15 ~ 48
-18 ~ 18	-18 ~ 18
Optional	Optional

HIGH STATIC SPLITTABLE

UHN140M3S

CATEGORY		INDOOR	UHN140M3S	UHN140M3S
		OUTDOOR	UU140WR3	UU140WR3L
COMBINATIONAL SPECIFIC	ATION	UNIT		
Cooling Consoitu	Rated ²⁾	kW	14	14
Cooling Capacity	Min ~ Max	kW	5.6 ~ 15.7	5.6 ~ 15.7
Useting Conseitu	Rated ²⁾	kW	16.5	16.5
Heating Capacity	Min ~ Max	kW	6.6 ~ 17	6.6 ~ 17
AEER			3.22	3.22
ACOP			3.71	3.71
Deted Current	Cooling	А	19.1	6.7
Rated Current	Heating	А	19.5	6.8
Full Load Amps		А	29.0	14.0
Air Flow Rate	Rated	L/s	900	900
Air Flow Rate	Min ~ Max	L/s	468 ~ 1,073	468 ~ 1,073
External Static Pressure	Min ~ Max	Pa	49 ~ 157	49 ~ 157
	Net (W x H x D)	mm	1,250 x 360 x 820	1,250 x 360 x 820
Indoor	Net Weight	kg	47	47
	Cooling ((SH)/H/M/L)	dB(A)	45.0 / 44.0 / 42.0	45.0 / 44.0 / 42.0
Outdoor	Net (W \times H \times D)	mm	950 x 1,380 x 330	950 x 1,380 x 330
	Net Weight	kg	89.0	89.0
	Cooling / Heating (@ 1.5 m height)	dB(A)	52 / 53	52 / 53
Power Supply		Ø, Hz, V	1, 50 Hz 220-240 V	3, 50 Hz 380-415 V
Comproseer	Туре	-	Inverter Scroll	Inverter Scroll
Compressor	Motor Type	-	BLDC	BLDC
	Fin Type	-	Wide Louver Plus	Wide Louver Plus
Heat Exchanger	Corrosion Protection (Coating)	-	Black 2	Black 2
Pefrigerant	Туре	-	R32	R32
Kenngerant	Pre-charge Length	m	20	20
	Liquid	mm(inch)	Ø9.52 (3/8)	Ø9.52 (3/8)
Pipe size	Gas	mm(inch)	Ø15.88 (5/8)	Ø15.88 (5/8)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
Piping Length	IDU - ODU (Rated / Max / Min)	m	7.5 / 85 / 5.0	7.5 / 85 / 5.0
Maximum Height Difference	IDU - ODU (Max)	m	30	30
Air Vent	Return (Oval)	mm	2 × 400	2 x 400
	Supply (W x H, Flange)	mm	1,148 x 291	1,148 x 291
Continuous Operation	Cooling	°C (DB)	-15 ~ 48	-15 ~ 48
continuous operation	Heating	°C (WB)	-18 ~ 18	-18 ~ 18
Wi-Fi Compatible 4)			Optional	Optional

Note:

Note: 1. Specifications are correct at the time of printing and may be changed without notice. 2. Capacities are based on following conditions. • Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB • Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB 3. This product contains fluorinated greenhouse gases. (R32) 4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

HIGH STATIC SPLITTABLE

UHN150M3S

UU140WR3 /

UU140WR3L

(R32)

CATEGORY		INDOOR OUTDOOR	
COMBINATIONAL SPECIFIC	ATION	UNIT	
Cooling Capacity	Rated ²⁾	kW	
cooling capacity	Min ~ Max	kW	
Heating Canacity	Rated ²⁾	kW	
neating capacity	Min ~ Max	kW	
AEER			
ACOP			
Rated Current	Cooling	А	
Rated Current	Heating	А	
Full Load Amps		А	
Air Flow Rate	Rated	L/s	
Air Flow Rate	Min ~ Max	L/s	
External Static Pressure	Min ~ Max	Pa	
	Net (W x H x D)	mm	
Indoor	Net Weight	kg	
	Cooling ((SH)/H/M/L)	dB(A)	
	Net (W x H x D)	mm	
Outdoor	Net Weight	kg	
	Cooling / Heating (@ 1.5 m height)	dB(A)	
Power Supply		Ø, Hz, V	
Comprossor	Туре	-	
Compressor	Motor Type	-	
	Fin Type	-	
Heat Exchanger	Corrosion Protection (Coating)	-	
Pefrigerant	Туре	-	
Nenigeranic	Pre-charge Length	m	
	Liquid	mm(inch)	
Pipe size	Gas	mm(inch)	
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	
Piping Length	IDU - ODU (Rated / Max / Min)	m	
Maximum Height Difference	IDU - ODU (Max)	m	
Air Vont	Return (Oval)	mm	
An vent	Supply (W x H, Flange)	mm	
Continuous On-artica	Cooling	°C (DB)	
continuous operation	Heating	°C (WB)	
Wi-Fi Compatible 4)			

Note:

Note:
1. Specifications are correct at the time of printing and may be changed without notice.
2. Capacities are based on following conditions.
Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB
Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB
2. This day to extra the day to the temp to extra the temp to

This product contains fluorinated greenhouse gases. (R32)
 (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

DUCTED & CASSETTE AIR CONDITIONER

UU150WR3 / UU150WR3L

	~ ~
UHN150M3S	UHN150M3S
UU150WR3	UU150WR3L
15.2	15.2
6.1 ~ 16.4	6.1 ~ 16.4
18	18
7.2 ~ 18.3	7.2 ~ 18.3
3.27	3.27
3.64	3.64
20.4	6.9
21.7	7.6
29.0	14.0
950	950
495 ~ 1,123	495 ~ 1,123
49 ~ 157	49 ~ 157
1,250 x 360 x 820	1,250 x 360 x 820
47	47
- / 46.0 / 44.0 / 42.0	- / 46.0 / 44.0 / 42.0
950 x 1,380 x 330	950 x 1,380 x 330
89.0	89.0
54 / 56	54 / 56
1, 50 Hz 220-240 V	3, 50 Hz 380-415 V
Inverter Scroll	Inverter Scroll
BLDC	BLDC
Wide Louver Plus	Wide Louver Plus
Black 2	Black 2
R32	R32
20	20
Ø9.52 (3/8)	Ø9.52 (3/8)
Ø15.88 (5/8)	Ø15.88 (5/8)
Ø32 (1-1/4) / 26 (1-1/32)	Ø32 (1-1/4) / 26 (1-1/32)
7.5 / 85 / 5.0	7.5 / 85 / 5.0
30	30
2 x 400	2 x 400
1,148 x 291	1,148 x 291
-15 ~ 48	-15 ~ 48
-18 ~ 18	-18 ~ 18
Optional	Optional

CEILING MOUNTED CASSETTE

Dual Sensing Control (Dry Summer)

During a dry summer season, the system senses the low humidity levels and decreases the operating ratio to increase humidity for a more comfortable environment and energy efficient operation.

 Comfortable Environment By making the room less dry Increased Energy Efficiency Provide optimized cooling and save energy considering humidity

Eliminate latent heat unnecessarily % Humidity Condition : Low (<30%), Standard (30 ~ 70%) 1) Indoor Condition 2) Evaporation Temperature

Excessive latent heat elimination regardless of humidity

Uncomfortable Environment

Waste Energy

Dual Sensing Control (Wet Summer)

During a wet summer season, the system senses the high humidity levels and increases the operating ratio to rapidly decrease humidity for a more comfortable indoor environment.

 Uncomfortable Environment General latent heat elimination regardless of humidity 1) Indoor Condition 2) Evaporation Temperature

Comfortable Environment

Quick latent heat elimination with humidity sensors

Human Detection (Optional Accessory)

Indoor unit senses human presence to switch on or off after a selected time to help reduce running costs. Time can be set to 30, 60 or 90 min, turning off if human presence is not detected in that time. This feature requires human detection sensor to be installed (optional) PTVSAA0.

* Data Based on actual test of LG, single product 2 hours measurement result. (Cooling 26 °C, strong wind)

Stylish Design Panel & Compact Size

New 4 way cassette panel adapted a unibody shape that matches with the ceiling.

Slim & compact design not only saves space but also reduces installation costs. It's designed to suit most of building designs and fit into various spaces.

Convenient Panel Installation

The detachable corner design makes it easy to adjust the hanger during installation and to check for leakages in the drain connection pipe. And it is easy to install the panel to the body, using the button type panel design.

Detachable Corner Design

One Push Panel

Hanger adjust

4 Way Air Flow with New Dual Vane Design

New 4 Way dual vane design that promotes comfortable and convenient airflow.

Color enhancement allows cassette to blend in to most interior ceiling spaces.

Full 3D Turbo Fan

3D Turbo fan decreases air resistance, to create powerful outlet flow.

High Efficiency Heat Exchanger (HEX)

Highly integrated heat exchanger is applied to increase cooling and heating efficiency.

* This specification can be different as per each model.

New Types of Wind Solutions

Indirect Wind

6 Air Flow Modes

Power Mode

Fast and Quick

Up / Down Swing

Fresh and Natural

Smart Mode

Auto Vane Control

Indirect Wind

Indirect

Direct Wind Suitable cooling & Heating for High Ceiling

Provide high concentration

Refresh Mode

DUCTED & CASSETTE AIR CONDITIONER

Wide Design

Bigger inlet and outlet make faster cooling / heating airflow.

Sensor Reads Temperature from Ceiling to Floor for Heating (Optional Accessory)

IDU provides the human oriented room temperature with sensing floor And calculating by floor and ceiling temperature by thermopile sensor.

* Available only for products with floor temperature sensor.

Human Detecting Direct / Indirect Airflow (Optional Accessory)

Human Detecting function can provide users favourite airflow.

Comfort Indirect

Follow User Direct

Direct Wind

Wind can reach up to 5m with plenty air volume. (@ 0.5ms)

Various Display of Air Purification (Optional Accessory)

Wi-Fi functionality for remote access for indoor unit control and air quality status display with LG ThinQ App.*

Pairing ThinQ*

Anywhere! Anytime! Can connect to IDU with ThinQ*

- Monitoring Air status : Easy to check indoor air status • Microfine dust / Ultra fine dust / Fine dust
- Day / Week / Month / Yearly

② Mobile Remote Control : Remote control by using mobile phone • Control Mode / Temperature / Air flow etc.

* For our policy of continuous improvement, specification, design and features are subject to change without prior notice.

IG ThinO*

* LG ThinQ app available on Android or iOS smartphones. Compatible smartphone with Android 4.1.2 (Jellybean) or later or iOS 9 or later required for LG ThinQ app. Phone and Home Wi-Fi Data connection and product registration on the ThinQ app required. Smart features and voice assistant product may vary by country and model. Check with your local retailer or LG for service availability. Features and services may be changed by LG without notice. Google, Google Play, Google Home and all related logos are trademarks of Google LLC. Voice-enabled smart speaker device is not included.

Mobile

③ Display Power Consumption : Check power consumption of A/C Check energy display

• Set target energy consumption level

Convenient and Powerful Air Purification (Optional Accessory)

Easy to manage air purifying system with one-touch air cleaning filter.

1) Electrical diffusion makes dust electrification.

CAC Certification?

The Korea Air Cleaning Association strictly tests the air cleaning function of air conditioner products and provide certification to the product that give credibility to consumers.

Association

Air Purification Technology

5-Steps air cleaning process removes invisible, ultra fine dust, odor and germs to ensure a clean and healthy living environment

Multi Layer structure, first layer removes larger particle to protects the main air filters from getting clogged up with debris for enhanced filtration performance.

Anion increases the electrostatic force of particle & this Improves

Removes up to 99% of Fine particle to ultrafine particle

High efficiency gas adsorption technology removes life odor &

Deactivate bacteria and virus that cause food poisoning and pneumonia

INDOOR UTN70PB UTN85PE CATEGORY OUTDOOR UU70WR2 COMBINATIONAL SPECIFICATION UNIT Rated ²⁾ kW 6.80 8.00 Cooling Capacity 3.20 ~ 9.20 Min ~ Max 2.70 ~ 8.00 kW 7.50 8.90 Rated ²⁾ kW Heating Capacity 3.60 ~ 10.10 Min ~ Max kW 3.00 ~ 9.00 AEER 3.493 3.243 ACOP 3.794 3.375 Cooling 8.60 10.90 Rated Current 8.70 11.60 Heating Full Load Amps 16.0 17.0 Air Flow Rate 283 317 Rated L/s Air Flow Rate Min ~ Max 173 ~ 368 207 ~ 412 L/s External Static Pressure Min ~ Max Pa Net (W x H x D) 840 x 204 x 840 840 x 204 x 840 mm Indoor Net Weight kg 21.1 21.1 Cooling ((SH)/H/M/L) dB(A) - / 38.0 / 36.0 / 34.0 - / 40.0 / 37.0 / 35.0 Net (W x H x D) 950 x 834 x 330 950 x 834 x 330 mm Net Weight kg 59.0 59.0 Outdoor Cooling / Heating (@ 1.5 m height) dB(A) 48.0 / 52.0 50.0 / 52.0 1, 50 Hz, 220-240 V 1, 50 Hz, 220-240 V Power Supply Ø, Hz, V Twin Rotary Twin Rotary Туре Compressor Motor Type BLDC BLDC Fin Type Wide Louver Plus Wide Louver Plus Heat Exchanger Corrosion Protection Black 2 Black 2 (Coating) R32 R32 Туре Refrigerant Pre-charge Length m 10 10 Ø9.52 (3/8) Ø9.52 (3/8) mm(inch) Liquid Gas mm(inch) Ø15.88 (5/8) Ø15.88 (5/8) Pipe size Drain Pipe mm(inch) Ø32 (1-1/4) / 25 (31/32) Ø32 (1-1/4) / 25 (31/32) (Drain Pump) OD/ID IDU - ODU 7.5 / 50.0 / 5.0 7.5 / 50.0 / 5.0 Piping Length (Rated / Max / Min) Maximum Height Difference IDU - ODU (Max) m 30 30 64.3 x 577 Supply Air Opening L x W 64.3 x 577 mm Return Air Opening L x W 563 x 563 563 x 563 mm °C (DB) -15 ~ 48 -15 ~ 48 Cooling Continuous Operation °C (WB) -18 ~ 18 -18 ~ 18 Heating Wi-Fi Compatible 4) Optional Optional

Note:

- 1. Specifications are correct at the time of printing and may be changed without notice. 2. Capacities are based on following conditions.
- Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB
- Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB
- This product contains fluorinated greenhouse gases. (R32)
 (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

UU70WR2 / UU85WR3

UTN100MA / UTN125MA / UTN140MA

CATEGORY		INDOOR	UTN100MA	UTN125MA	UTN140MA
		OUTDOOR	UU100WR3	UU125WR3	UU140WR3
COMBINATIONAL SPECIFICATION		UNIT			
Cooling Capacity	Rated ²⁾	kW	9.50	12.30	13.60
	Min ~ Max	kW	3.80 ~ 12.54	4.80 ~ 14.16	5.40 ~ 15.68
Heating Capacity	Rated ²⁾	kW	10.80	13.50	15.50
	Min ~ Max	kW	4.30 ~ 13.39	5.40 ~ 15.80	6.20 ~ 17.52
AEER			4.111	3.660	3.162
ACOP			4.354	3.791	3.506
Rated Current	Cooling	А	10.10	14.60	18.70
	Heating	А	10.70	15.00	19.00
Full Load Amps		А	17.0	28.0	28.0
Air Flow Rate	Rated	L/s	458	458	500
Air Flow Rate	Min ~ Max	L/s	300 ~ 595	300 ~ 595	333 ~ 650
External Static Pressure	Min ~ Max	Pa			
Indoor	Net (W x H x D)	mm	840 x 288 x 840	840 x 288 x 840	840 x 288 x 840
	Net Weight	kg	25.3	25.3	25.3
	Cooling ((SH)/H/M/L)	dB(A)	- / 44.0 / 42.0 / 41.0	- / 44.0 / 42.0 / 41.0	- / 46.0 / 44.0 / 42.0
Outdoor	Net (W x H x D)	mm	950 x 1,380 x 330	950 x 1,380 x 330	950 x 1,380 x 330
	Net Weight	kg	89.0	89.0	89.0
	Cooling / Heating (@ 1.5 m height)	dB(A)	50.0 / 50.0	51.0 / 52.0	52.0 / 53.0
Power Supply		Ø, Hz, V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V	1, 50 Hz, 220-240 V
Compressor	Туре	-	Inverter Scroll	Inverter Scroll	Inverter Scroll
	Motor Type	-	BLDC	BLDC	BLDC
Heat Exchanger	Fin Type	-	Wide Louver Plus	Wide Louver Plus	Wide Louver Plus
	Corrosion Protection (Coating)	-	Black 2	Black 2	Black 2
Refrigerant	Туре	-	R32	R32	R32
	Pre-charge Length	m	20	20	20
Pipe size	Liquid	mm(inch)	Ø9.52 (3/8)	Ø9.52 (3/8)	Ø9.52 (3/8)
	Gas	mm(inch)	Ø15.88 (5/8)	Ø15.88 (5/8)	Ø15.88 (5/8)
	Drain Pipe (Drain Pump) OD/ID	mm(inch)	Ø32 (1-1/4) / 25 (31/32)	Ø32 (1-1/4) / 25 (31/32)	Ø32 (1-1/4) / 25 (31/32)
Piping Length	IDU - ODU (Rated / Max / Min)	m	7.5 / 85 / 5.0	7.5 / 85 / 5.0	7.5 / 85 / 5.0
Maximum Height Difference	IDU - ODU (Max)	m	30	30	30
Supply Air Opening	L×W	mm	64.3 x 590	64.3 x 590	64.3 x 590
Return Air Opening	L×W	mm	563 x 563	563 x 563	563 x 563
Continuous Operation	Cooling	°C (DB)	-15 ~ 48	-15 ~ 48	-15 ~ 48
	Heating	°C (WB)	-18 ~ 18	-18 ~ 18	-18 ~ 18
Wi-Fi Compatible 4)			Optional	Optional	Optional

Note

1. Specifications are correct at the time of printing and may be changed without notice. 2. Capacities are based on following conditions.

• Cooling: Indoor Temp 29°C DB / 19°C WB, Outdoor Temp 35°C DB / 24°C WB

- Heating: Indoor Temp 20°C DB, Outdoor Temp 7°C DB / 6°C WB
- 3. This product contains fluorinated greenhouse gases. (R32)
- 4. (Sold separately) Dongle required for Wi-Fi Connectivity. Internet connection required.

UU100WR3 / UU125WR3 / UU140WR3

Мето	Мето

CEILING MOUNTED CASSETTE